3.7.37 \(\int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx\) [637]

3.7.37.1 Optimal result
3.7.37.2 Mathematica [A] (verified)
3.7.37.3 Rubi [A] (verified)
3.7.37.4 Maple [B] (warning: unable to verify)
3.7.37.5 Fricas [B] (verification not implemented)
3.7.37.6 Sympy [F(-1)]
3.7.37.7 Maxima [F]
3.7.37.8 Giac [F(-2)]
3.7.37.9 Mupad [F(-1)]

3.7.37.1 Optimal result

Integrand size = 35, antiderivative size = 243 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {(A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a-b} d}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a+b} d}+\frac {2 (2 A b-3 a B) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{3 a^2 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{3 a d} \]

output
-(A+I*B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot 
(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d/(I*a-b)^(1/2)-(A-I*B)*arctanh((I*a+b)^(1/ 
2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1 
/2)/d/(I*a+b)^(1/2)-2/3*A*cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^(1/2)/a/d+2/3* 
(2*A*b-3*B*a)*cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)/a^2/d
 
3.7.37.2 Mathematica [A] (verified)

Time = 2.92 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.88 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {\sqrt {\cot (c+d x)} \left (\frac {3 \sqrt [4]{-1} (i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {-a+i b}}+\frac {3 (-1)^{3/4} (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {a+i b}}-\frac {2 (-2 A b+3 a B+a A \cot (c+d x)) \sqrt {a+b \tan (c+d x)}}{a^2}\right )}{3 d} \]

input
Integrate[(Cot[c + d*x]^(5/2)*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x 
]],x]
 
output
(Sqrt[Cot[c + d*x]]*((3*(-1)^(1/4)*(I*A + B)*ArcTan[((-1)^(1/4)*Sqrt[-a + 
I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]])/Sqr 
t[-a + I*b] + (3*(-1)^(3/4)*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqr 
t[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]])/Sqrt[a + I* 
b] - (2*(-2*A*b + 3*a*B + a*A*Cot[c + d*x])*Sqrt[a + b*Tan[c + d*x]])/a^2) 
)/(3*d)
 
3.7.37.3 Rubi [A] (verified)

Time = 1.38 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.99, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4729, 3042, 4092, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (c+d x)^{5/2} (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan (c+d x)^{5/2} \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 \int \frac {2 A b \tan ^2(c+d x)+3 a A \tan (c+d x)+2 A b-3 a B}{2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {2 A b \tan ^2(c+d x)+3 a A \tan (c+d x)+2 A b-3 a B}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {2 A b \tan (c+d x)^2+3 a A \tan (c+d x)+2 A b-3 a B}{\tan (c+d x)^{3/2} \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {-\frac {2 \int -\frac {3 \left (A a^2+B \tan (c+d x) a^2\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {3 \int \frac {A a^2+B \tan (c+d x) a^2}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {3 \int \frac {A a^2+B \tan (c+d x) a^2}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}}{3 a}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {3 \left (\frac {a^2 (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^2 (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a}}{3 a}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {3 \left (\frac {a^2 (A+i B) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^2 (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a}}{3 a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {3 \left (\frac {a^2 (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^2 (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a}}{3 a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {-\frac {2 (2 A b-3 a B) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {3 \left (\frac {a^2 (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^2 (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a}}{3 a}\right )\)

input
Int[(Cot[c + d*x]^(5/2)*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]],x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-2*A*Sqrt[a + b*Tan[c + d*x]])/(3* 
a*d*Tan[c + d*x]^(3/2)) - ((3*((a^2*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[T 
an[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (a^2*(A - I*B 
)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(S 
qrt[I*a + b]*d)))/a - (2*(2*A*b - 3*a*B)*Sqrt[a + b*Tan[c + d*x]])/(a*d*Sq 
rt[Tan[c + d*x]]))/(3*a))
 

3.7.37.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.7.37.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.31 (sec) , antiderivative size = 1890882, normalized size of antiderivative = 7781.41

\[\text {output too large to display}\]

input
int(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x)
 
output
result too large to display
 
3.7.37.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 10191 vs. \(2 (195) = 390\).

Time = 2.94 (sec) , antiderivative size = 10191, normalized size of antiderivative = 41.94 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.7.37.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)
 
output
Timed out
 
3.7.37.7 Maxima [F]

\[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(5/2)/sqrt(b*tan(d*x + c) + a) 
, x)
 
3.7.37.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.7.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}} \,d x \]

input
int((cot(c + d*x)^(5/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(1/2),x 
)
 
output
int((cot(c + d*x)^(5/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(1/2), 
x)